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Modulus softening and permanent set in filled polymeric materials due to cyclic loading and unloading, commonly known as the 

Mullins effect, can have a significant impact on their use as support cushions. A quantitative analysis of such behavior is essential to 

ensure the effectiveness of such materials in long-term deployment. In this work we combine existing ideas of filler-induced modulus 
enhancement, strain amplification, and irreversible deformation within a simple non-Gaussian constitutive model to quantitatively 

interpret recent measurements on a relevant PDMS-based elastomeric cushion. We find that the experimental stress-strain data is 

consistent with the picture that during stretching (loading) two effects take place simultaneously: (1) the  physical constraints 
(entanglements) initially present in the polymer network get dis-entangled, thus leading to a gradual decrease in the effective cross-

link density, and (2) the effective filler volume fraction gradually decreases with increasing strain due to the irreversible pulling out of 

an initially occluded volume of the soft polymer domain.      
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I. INTRODUCTION 

Poly(dimethylsiloxane) (PDMS), with strong resistance to 

high temperature, radiation, and chemical attack is the most 

widely used silicone elastomer in many applications ranging 

from artificial organs and biomedical devices to cushions, 

coatings, adhesives, interconnects, and seismic-isolation-, 

thermal-, and electrical barriers [1-11]. However, to ensure 

consistent performance under long-term deployment, one 

needs to carefully examine cumulative effects that might 

potentially alter its properties of interest. With our focus on 

the mechanical properties of PDMS-based cushion and 

support pads, we have previously examined the effect of 

radiation on the molecular weight distribution, cross-link 

density, elastic modulus, and permanent set in cross-linked 

PDMS elastomers of our interest [12, 13]. We found that in 

all these experiments, the effect of radiation is strongly 

coupled with mechanical softening and permanent set effects 

due to repeated cycling of the rubber [14], a well-known 

effect commonly called the Mullins effect [15, 16]. In 

applications where the amount of radiation exposure is small, 

it is important to develop a quantitative theory to understand 

and estimate the changes in elastic modulus and permanent 

set due to the Mullins effect.    

The Mullins effect typically has the following 

characteristic signatures [15-17]: (1) significant softening 

results upon the first unloading cycle; (2) the amount of 

softening increases with increase in the maximum strain in 

the first cycle; (3) subsequent loading closely follows the 

first unloading curve and the unloading shows much less 

softening as long as the previous maximum strain is not 

exceeded; (4) if a subsequent loading exceeds the previous 

maximum, it acts as if to follow a continuation of the 

previous maximum loading curve; (5) there can be an 

induced anisotropy even in rubber that is isotropic in its 

virgin state; and (6) there is often a small but noticeable 

permanent set at the end of the first unloading curve. The 

permanent set typically increases upon unloading from an 

increased maximum strain, although in some cases it can 

recover after a long resting time [18]. Although the Mullins 

effect has been observed in both filled and unfilled rubber, it 

is particularly pronounced in systems with significant filler 

content.  

Analysis by many groups over the past several decades has 

led to the suggestion of several different physical 

mechanisms behind the Mullins effect, including polymer-

filler chain breakage [19-21], chain slippage [22, 23], rupture 

of filler clusters [24], and chain dis-entanglement [25]. 

Although the detailed mechanism is not clear, and perhaps 

could even be dependent on the type of rubber, filler, strain-

rate, etc., many authors have taken the viewpoint that stiff 

filler particles lead to an enhanced elastic modulus through 

rubber-filler attachments that provide additional restrictions 

on the cross-linked rubber network – softening results from 

the breakdown, slippage, or loosening of some of these 

attachments, a phenomenon commonly referred to as stress 

softening [20-30]. Modeling such phenomenon has typically 

involved the representation of filled rubber with multiple 

networks, and strain-induced damage or alteration of one of 

the networks, while more detailed refinements, e.g., that 

involving the cluster topology of fillers are progressively 

being introduced [31]. An alternative way to analyze Mullins 

effect has been to treat filled rubber as a system comprised of 

soft and hard domains [32-38] that evolve under stretch – 

softening is caused by a quasi-irreversible increase in the 

volume fraction of the soft domain. Models based on the 

second line of thought [39, 40] postulate a localized non-

affine deformation of the molecular networks due to short 

chains reaching their limits of extensibility, and effective 

strain amplification [33-35] in the soft domain as compared 

to the actually applied strain because of almost zero strain in 

the hard domain.  

The first viewpoint of describing Mullins effect typically 

necessitates complex materials-based models that continue to 

get refined in the current literature [31, 41]. On the other 

hand, the second viewpoint (i.e. strain amplification) is more 

phenomenological, and has been shown to be easily 

implementable in finite-elements simulation codes [39]. 

However, there is some ambiguity in how strain should be 

amplified. For instance, Mullins and Tobin [32, 33] 

suggested amplifying the uniaxial strain, Govindjee and 

Simo [26] suggested amplifying the total deformation 

gradient, while Boyce and co-workers [39, 40] have 

suggested amplifying the first invariant of stretch I1.   

In this paper we analyze the observed Mullins softening in 

a filled PDMS rubber material of our interest using the 

concept of strain amplification in a way originally proposed 

by Mullins and Tobin [32, 33]. Given the large amounts of 
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stretching involved, we adopt a non-Gaussian stress function 

[42, 43] and generalize it for the case of amplified strain. The 

layout of the paper is as follows: section II contains a short 

discussion of the experimental measurements, section III 

systematically develops the materials model, section IV 

summarizes the main results, and we conclude with a brief 

summary in section V.         

II. MEASUREMENTS 

 

 

 

 

 

 

 

 

Figure 1. Stress-strain curve for a typical TR-55 sample that 
underwent five loading and four unloading cycles with the first four 
loading cycles limited to an engineering strain of 2.1 and the fifth 
loading cycle exceeding this strain. In addition to the typical Mullins 
softening, one observes a large permanent set with a recovered 
engineering strain s ~ 18%. 

The mechanical measurements reported here were 

performed on the commercial silicone elastomer TR-55 from 

Dow Corning, the same system on which previous studies of 

radiation aging had been carried out [12-14, 44]. It 

essentially consists of silicone gum stock (primarily PDMS) 

filled with 30 wt% of fumed silica, which corresponds to a 

filler volume fraction of ~ 16%. In our mechanical 

measurements, rectangular samples (~3 mm wide by ~1 mm 

thick) of TR-55 were stretched to a maximum engineering 

strain of max ~ 2.1 at a rate of 20 mm/min under ambient 

conditions. The initial grip separation was 20 mm. After 5 s 

at max the external stretching force was removed and the 

samples relaxed to a state of equilibrium (i.e., zero stress). 

After 5 s in the zero stress condition, the samples were 

stretched again to the previously attained maximum stretch. 

The cycle was repeated four times. During the fifth loading 

cycle, the sample was stretched beyond the previous 

maximum stretch.    Fig. 1 plots the stress-strain response of 

a typical TR-55 sample. It exhibits many of the characteristic 

Mullins signatures mentioned in the introduction. Two 

aspects that are most noteworthy are the significant softening 

and a large permanent set incurred upon the very first 

unloading, with a recovered engineering strain s – 1 ~ 18% 

(where s is the ratio of the length of the specimen with 

incurred permanent set to the original length). If such strain 

levels are not accounted for prior to the deployment of the 

elastomeric component in mechanical support devices, it can 

have undesired effects in the long-term performance. 

 

III. MODELING 

 
 

 

 

 

 

 

 

 

 

 

Figure 2. A simplified representation of Fig. 1 for modeling purpose. 

Given that the difference between the first unloading curve 

and subsequent loading and unloading curves are small until 

the previous maximum strain is exceeded, a common 

simplification is to ignore such difference, as illustrated in 

Fig. 2 below. Thus, a quantitative analysis of the Mullins 

effect becomes an exercise in describing the first loading and 

the first unloading curves for varying maximum strain levels. 

In order to develop an appropriate stress-strain relation, i.e., a 

materials model, we start from the simple Neohookean model 

[43] often employed in the description of the mechanical 

response of unfilled, cross-linked rubber. Under a uniaxial 

strain, the expression for stress in this model is given by: 

         ,  (1) 

  

where  is the true stress,  the stretch ratio (i.e.,  = 1 + , 

where  is the engineering strain), and G0 the shear modulus. 

For an unfilled network system G0 can be expressed as a 

function of the cross-link density, with some dependence on 

the network topology, junction coordination, etc. [45]. The 

above model is based on the assumption that the cross-links 

behave essentially as Gaussian chains, which can be justified 

under not-too-large strains. Under large strains finite 

extensibility needs to be taken into account via non-Gaussian 

statistics, under which eq. (1) gets modified to the Wang-

Guth model [42, 43]: 

 

                ,  (2) 

 

where N is a parameter describing the finite chain length of 

the small-chain cross-links (presumably related to polymer-

filler attachments), and L-1 is the inverse of the Langevin 

function given by xxx /1)coth()( L . In the small strain 

limit, where N/ << 1 (assuming N >> 1), the inverse 

Langevin function can be approximated as )/(1 NL ≈ 3
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The Wang-Guth model, eq. (2), is suitable for describing 

the mechanical response of networked, elastomeric systems 

without fillers. For filled systems, Mullins and later workers 

found it necessary to incorporate the notion of strain 

amplification. To represent strain amplification we follow the 

original work of Mullins and Tobin [32, 33] and replace the 

stretch ratio  in eq. (2) by an amplified stretch ratio  given 

by: 

  )1(1   X , (3) 

where X is an amplification factor that depends on the 

effective volume fraction veff of the hard domain, i.e., fillers. 

A commonly used form for X as a function of veff is given by 

[40]: 

    . (4) 

In eq. (4) b is a parameter with a commonly used value of 18, 

which is obtained by comparing with the widely adopted 

filler-enhancement model due to Guth and Gold [46] that is 

applicable for well-dispersed nearly spherical filler particles 

with not-too-high volume fraction (≈ 15 % or below). 

Replacing the stretch ratio  in eq. (2) by , and accounting 

for the fact that the elastic response comes only from the soft 

part of the material, we obtain the following materials model 

for filled rubber: 

 

       

                                                                                         .  (5) 

Eq. (5) can be used to describe the Mullins effect 

quantitatively by assuming that during the first loading curve 

the soft part of the matrix is being pulled out of the hard 

region thus progressively decreasing the relative volume 

fraction veff of the hard domain. The volume fraction of the 

soft part (1-veff) should increase monotonically with increase 

in the maximum strain level, and expected to reach a 

saturation value depending upon the relative amount of filler 

particles that was originally mixed into the rubber 

formulation. 

    Finally, to account for the observed permanent set (see 

Fig. 1) the formula for stretch ratio, eq. (3) was modified as 

follows 

       ,   (6) 

where s is the recovered length, which in our model is 

assumed to increase linearly with  during the first loading 

cycle until a maximum value of s,max is reached at the 

maximum strain. During any subsequent unloading and 

reloading s remains constant at this maximum value until 

the previously attained maximum strain is exceeded. The 

numerical value of s,max is obtained from the experimental 

recovered length at the end of the first unloading curve.  

Equations (4)-(6) constitute the materials model employed in 

the simulations presented below.  

 

 

IV. RESULTS  

In order to compute the stress-strain behavior () using 

the model developed in the previous section, the parameters 

G0, b, N, veff and s need to be determined. The motivation of 

this project was to obtain these parameters (some of which 

could vary with strain if necessary) such that not only is the 

computed stress in quantitative agreement with that observed 

experimentally for TR-55 (Fig. 1), but also the parameters 

conform with previous knowledge about similar filled 

systems. For instance, given ~ 16% volume fraction of fillers 

in TR-55, the parameter b is expected to be ~ 18 [40, 46], 

while the filler-enhancement factor at low-stress should be 

roughly in the range 2-3.5 [Fig.4, ref. [39]]. From the 

phantom network model G0 can be assumed proportional to 

the cross-link density (xlink) through the equation:

TkfG Bcxlink )/21(0  [45], where fc is the average 

network coordination, kB the Boltzmann constant, and T the 

absolute temperature. However, there is always a degree of 

uncertainty as to the nature of the cross-link, e.g., a chemical 

cross-link vs. a physical entanglement. Swelling experiments 

on unfilled systems of similar polymeric material indicate 

that the chemical cross-link density is much too small (by a 

factor of ~ 4-5) to account for the observed mechanical 

modulus at low strain. This leads us to believe that prior to 

being subjected to any strain, the polymer chains in the TR-

55 material are strongly entangled, while upon swelling or 

mechanical stretching a significant fraction of these 

entanglements become dis-entangled, thus reducing the 

effective value of G0. 

 

 

 

 

 

 

 

 

Figure 3. Stress-strain response in TR-55 during the first loading-

unloading cycle (maximum engineering strain max = 2.15): 

Experimental vs. Simulated results. The experimental results are 

from Fig. 1, while the simulated results are obtained using eqs. (4), 
(5), and (6) (see text) with no re-entanglements allowed during 

unloading (see Fig. 5). The simulated curve corresponds to fixed 

parameters b = 18, N = 30; on the loading curve G0 decreases 
linearly from 0.35 MPa at point A to 0.09 MPa at point B and then 

assumed to remain constant during unloading (path BC') and further 

loading until the previous maximum strain is exceeded.  
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Fig. 3 (dashed-dotted curve) displays the results of our 

model calculation of true stress () as compared to the 

experimental data from Fig. 1 (up to a maximum engineering 

strain of  = 2.15).  The various parameters, chosen within 

the constraints mentioned in the previous paragraph, were:  b 

= 18; N = 30; s = 1 at  = 0 increasing linearly to s = 1.18 

at the end of loading ( = 2.15); G0 starting from an original 

value of G0, orig = 0.35 MPa at zero strain (point A:  = 0) 

decreasing linearly to 25% of this initial value at the end of 

loading (point B:  = 2.15). The gradual decrease in G0 

during the loading corresponds to a 4-fold decrease in the 

effective cross-link density due to de-tangling of physical 

entanglements, as discussed in the previous paragraph. The 

value of veff, the effective volume of the hard domain, was 

treated as an adjustable parameter so that the computed stress 

() follows the experimental loading curve.  

 

 

 

 

 

 

 

 

 

Figure 4. The effective volume of the hard domain veff as a function 
of strain during the first loading curve. During subsequent loading 

and unloading cycles veff in this model is assumed to remain at its 
lowest value (achieved during the previous maximum loading) until 

the previously attained maximum strain level is exceeded. 

Fig. 4 displays the resulting behavior of veff as a function 

of strain. Although the actual volume fraction of the fillers is 

only ~ 16% in TR-55, veff starts out higher, around 42%. The 

higher than actual value of veff in the beginning of loading 

can be interpreted as due to an occluded volume of the 

polymer that effectively behaves like part of the rigid domain 

[47]. With increasing strain, this occluded volume gets 

released, thus irreversibly increasing the fraction of the soft 

domain and correspondingly decreasing the volume fraction 

of the hard domain. At large strains, one expects the occluded 

volume to nearly go to zero, in which case veff should be 

around the volume fraction of the fillers originally included 

in the rubber formulation, consistent with the behavior we 

see in Fig. 4. Another point of consistency check for this 

model is to consider the filler-enhancement factor for the 

mechanical modulus at small strain. By comparing the small-

strain-limit of equation (1) (or (2)) with that of the strain-

amplified materials model (eq. (5)) one obtains the following 

formula for the enhancement factor (denoted by ): 

             ,  (7) 

which, with the choice of b = 18, reduces to the well-known 

filler-enhancement factor of Guth and Gold [46].  Using the 

small-strain value veff ~ 0.42 (see Fig. 4), we obtain  ~ 3.3, 

which is within the range expected from experimental values 

on a number of filled rubber systems [Fig.4, ref. [39]]. 

 

 

 

 

 

 

 

 

Figure 5. The behavior of modulus G0 (which can be assumed 

proportional to the density of cross-links in the soft domain, both 
physical and chemical) as a function of the applied strain during the 

first loading and unloading cycle. For unloading two different paths 

are shown: no re-entanglement allowed (dashed curve BC') that leads 
to curve BC' in Fig. 3; and re-entanglement allowed (solid curve BC) 

that leads to curve BC in Fig. 6. A large fraction of the physical 

entanglements lost during loading appear to get recovered by the end 
of unloading.  

 

 

 

 

 

 

 

 

Figure 6. The same as Fig. 3 with re-entanglement upon unloading 

allowed (see path BC in Fig. 5).  

We note that in Fig. 3 the computed unloading curve 

consistently falls below the experimental unloading curve. 

The origin of this could be traced back to the assumption in 

our model that the initially occluded volume of the soft 

domain that gets pulled out and the physical entanglements 

that get detangled during the application of tensile strain are 

both irreversible, i.e., there is no recovery in either of these 

quantities during the unloading process. Allowing partial 

recovery in either or both of these quantities will result in a 

simulated stress that is much closer to the experimental 

value. Given that possible retraction of the occluded volume 
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presumably occurs on a much longer timescale than the 

experimental times, we have considered below the case in 

which the soft network domain undergoes some physical 

entanglement during unloading. Fig. 5 displays the behavior 

of the modulus G0 (as a fraction of the starting value) during 

loading and unloading in situations both with and without re-

entanglement. The latter case leads to the computed stress-

strain curve overlap with the experimental data, as shown in 

Fig. 6. 

Finally, from the above model it is straightforward to 

simulate the stress-strain behavior for any loading-unloading 

cycle with a maximum strain level within the maximum in 

Fig. 3 (i.e. max ≤ 2.1). Fig. 7 displays the simulated results 

for four loading-unloading cycles with max = 0.5, 1.0, 1.5, 

and 2.1, respectively. As alluded to in Fig. 2, in our model 

the unloading curve of the previous cycle coincides with the 

loading curve of the following cycle. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Simulated stress-strain response in TR-55 for different 

intermediate maximum strain levels: Cycle 1 (max = 0.5); Cycle 2 

(max = 1.0); Cycle 3 (max = 1.5); Cycle 4 (max = 2.15).  The loading 
(unloading) segments are indicated with up (down) arrows.  The 

model parameters used are the same as used to obtain the simulated 

results in Fig. 6.  

 

V. SUMMARY 

In this paper we have developed a phenomenological 

model that quantitatively reproduces the stress-strain 

behavior of a specific filled rubber system (TR-55). The 

model is based on using the Mullins-Tobin concept of 

amplified strain within the Wang-Guth stress function and 

incorporates a few additional features that is expected to be 

generally applicable to most filled rubber systems, including: 

(1) a permanent set (expressed as recovered length s) that 

increases linearly as a function of strain (during loading); (2) 

an effective cross-link density (or modulus G0) that during 

loading decreases linearly as a function of strain due to de-

tangling of physical entanglements, with partially recovery 

during unloading; and (3) an effective filler volume that 

decreases with increasing strain (due to the gradual pulling of 

the soft polymer domain  out of an initial occluded phase) 

until a saturation value of ~ 16% is reached (corresponding to 

the filler volume fraction in the TR-55 material). The filler-

enhancement factor at small strain is obtained as 3.3, which 

is within the range of what has been reported in the literature 

for a number of different filled rubber systems at this filler 

volume fraction.    
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